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THE T H E R M O D Y N A M I C  T H E O R Y  OF CAPILLARITY UNDER 
THE HYPOTHESIS  OF A C O N T I N U O U S  V A R I A T I O N  OF 
DENSITY 

J. D. van der Waals 

1. I N T R O D U C T I O N  

Lap lace  cons idered  capi l la ry  phenomena  to be in the doma in  o f  statics. 
Gauss  shared this idea;  it  was by apply ing  the pr inciple  o f  vir tual  velocities,  
which  al lows us to find the condi t ions  o f  equi l ibr ium in statics, tha t  he was 
ab le  to fo rmula te  the laws o f  these phenomena .  Nei ther  au thor  supposed  tha t  
the  molecules  were in the rmal  m o t i o n  either in the body  o f  the fluid or  in 
the  b o u n d a r y  layer ;  and  if  we recall  the era  in which their  theories were 
developed,  this should  no t  surprise us. The molecules for  them are therefore  
at  rest ;  and  if  this is really the  case then the p h e n o m e n o n  is pure ly  static. 
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But such a hypothesis is directly contrary to present ideas on the nature of  
heat, which suppose the molecules to be in rapid movement. The phenom- 
enon ought therefore, following this new theory, to be of  a thermodynamic 
nature; and we shall not discover the laws of capillarity by applying a prin- 
ciple that is valid only in statics; we must start from a principle which shows 
us the state of  a substance in thermodynamic equilibrium. Such equilibrium 
is not a state of rest but a steady state of motion. 

A thermodynamic theory of capillarity has already been developed by 
Gibbs. His paper, " O n  the equilibrium of  heterogeneous substances," is in 
the main devoted to these phenomena; the author takes more than a hundred 
pages to explain their nature and to discuss both well-known and less well- 
known applications. Equation (502) of Gibbs' paper can be regarded as the 
essence of the new theory. 

Gibbs himself has observed (footnote p. 432 [p. 267]) that it is possible 
to interpret capillary phenomena in quite another way. Now circumstances 
which need not be mentioned here led me to conceive a different theory of  
these phenomena; and I think that there is some interest in making it known, 
all the more because in my view objections can be raised against a sup- 
position which Gibbs has had to use to arrive at his fundamental equation 
(502). 

According to Gibbs' theory, capillary phenomena are present only if 
there is a discontinuity between the portions of  fluid that are face-to-face. 
The chapter of his paper that discusses capillarity carries, in fact, the title, 
"Influence of surfaces of  discontinuity, etc." In contrast, the method that 
I propose to develop in the following pages is not a satisfactory treatment 
unless the density of  the body varies continuously at and near its transition 
layer. It will not be without interest to show that the two apparently contra- 
dictory hypotheses lead to values of the same order of magnitude for the 
capillary tension and energy. 

2. THE T H E R M O D Y N A M I C  PRINCIPLE OF E Q U I L I B R I U M  

The thermodynamic principle of equilibrium can be formulated as fol- 
lows: Matter distributes itself in a space in such a way that, for a given 
energy, the entropy attains a maximum. This principle, which Gibbs takes 
as the basis of his researches, is already found in essence in the work of  
Clausius. The latter shows in fact that if irreversible, and therefore clearly 
nonequilibrium changes are made, the entropy of  a system increases. 

The truth of  this proposition can be shown without difficulty in one or 
two cases of irreversibility, as for example the case of inequality of tempera- 
ture or of  a nonzero difference of pressure. But these facts are far from 
leading logically to the conclusion that a maximum in entropy necessarily 
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implies a state of equilibrium. Hence we must recognize that the principle 
is not proved by this argument; it is, however, rendered all the more prob- 
able. However, the truth of the principle of thermodynamic equilibrium is 
no more in doubt than that of several other similar principles, which have 
been deduced by generalization from our observation of particular cases. 
In my view, the logical basis of the principle of  conservation of energy is no 
more certain. 

The total entropy can be represented f p~ dk; where dk is an element of  

volume of  the given space, p the density in this element, and 7/the entropy 
per unit mass in the state present in this element of  volume. Similarly 

f pc dk expresses the total energy, and f p dk the given amount of substance. 

The principle of  equilibrium implies therefore that if 

f p d k = c l  and focdk=c2 (2.1) 

then matter distributes itself in the volume in such a way that f p~l dk attains 

a maximum value. In other words, when equilibrium is established, we have 

a k  = 0 

subject to the conditions (2.1). 
We can invert the principle of equilibrium as follows: A given amount 

of  matter distributes itself in a given space in such a way that, for a given 
value of  the total entropy, the total energy has a minimum, or 

when 

3 f pc dk = 0 (2.2) 

f p dk = cl and f pv dk = cz (2.3) 

Finally, the form in which the same principle is most easily applied, 
which I have used in my work 3 "Molecular Theory etc.", and which I pro- 
pose to use in the present work, is the following: A given substance dis- 
tributes itself in a given space, at a given temperature, in such a way that 

f p ( c -  ~-1~7)dk becomes a minimum. This third form follows from the 

a Molecular Theory of a substance formed from two different components; Z. Phys. 
Chem. 5:133 (1890), or Arch. Nderl. 24:1 (1891). 
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second as follows. Let l be a constant factor; then it follows, by the rules 
of the calculus of variations, that 

f p(e - 17) dk -- 0 when f p dk = cl (2.4) 3 

is equivalent to Eqs. (2.2) and (2.3). 
In other words, every solution of Eqs. (2.2) and (2.3) satisfies also (2.4), 

and vice versa. We need only to define the significance of  l. To do this we 
take the temperature as one of  the parameters that determines the state at 
any point in the space. 

If  the other arbitrary parameters do not change--if  therefore the density 
also remains constant--i t  follows that 

dr l = 0 

By comparing this with one of the first equations of the mechanical 
theory of heat 

r d~ = de + p dV  

we see that l represents the temperature r l ,  which must be constant since 
we have equilibrium. This third form of  the principle of equilibrium is more 
simple to apply than the two preceding ones, since three equations are 
reduced to two, without loss of generality. The supplementary condition of 
constant temperature ~-z excludes no imaginable state of  equilibrium. It is 
also simpler since (E - ~-~), which we call the free energy, can be found 
immediately from the equation of state, at least for homogeneous phases. 

There is also a fourth form in which one can express the thermodynamic 
principle of equilibrium: A given amount of  matter distributes itself, at given 
temperature and pressure, in such a way that the total value ore  - ~-z~ + pz V 
becomes a minimum. It is not difficult to deduce this from the preceding 
form. It yields solutions which are valid only when the pressure remains 
constant, and so when external forces are excluded. It is thus less general 
than the third form. 

3. APPLICATION TO THE EQUIL IBRIUM OF A SINGLE 
S U B S T A N C E  W I T H O U T  C O N S I D E R A T I O N  OF 
CAPILLARY P H E N O M E N A  

The state at any point in a given space is determined by the density 
or specific volume, the temperature being specified, This is not to say, how- 
ever, that e or e - rl~ is completely determined by this density; each depends 
equally on the density at neighboring points. But the error that we commit 
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in assuming a dependence on the density only at the point considered vanishes 
completely when the state of equilibrium is that of a homogeneous distribu- 
tion of  the substance. There remains only an error at the limits where the 
substance is in contact with the boundaries. When the substance separates 
in a vessel into two parts of unequal density, there also will be an error 
for another layer, namely the transition layer between the two parts. If, 
however, the state of  equilibrium is one where there is a change of density 
throughout the vessel, as in a substance under the action of gravity, then the 
error becomes general, however feeble it may be. The only circumstances 
that we are concerned with are those arising from capillarity. Thus if we 
admit that E, and hence also E - ~ / ,  is determined at each point only by 
the density at that point, then we shall find the conditions of equilibrium, 
neglecting the capillary phenomena. 

If we represent e - ~-~ by ~b, then these conditions are ~ f p~b dk  = 0 

and  f p dk  = C. 

The application of these formulas can be reduced to the calculation of  
the variation of an integral without additional conditions by subtracting 
a constant multiple of  the second integral from the first, and so by writing 

or  

f p(@ - a~ )dk  = 0 

dk 0 

It follows therefore that at any point in the space we have 

or again 

E -  ~i~ + P l V = ~ I  

The density at each point must therefore be such that the two quantities 
T1 and/~1 have everywhere the same values. If there are no external forces, 
then there is a third quantity, namely the pressure p, which must satisfy the 
same condition. This last rule follows from the differential equation 

dE -- ~-~ d~7 + p d V  + V @  = 0 

Since, when E is not a function of position, we have dE = -r~ d~ - p  dV, 
then dp will be zero, or p = const = p l .  

The condition of equality of the three quantities ~-z,/~, and Pl can be 
satisfied, in the case of one single substance, only if there is a unique homo- 



Translation of "The Thermodynamic Theory of Capillarity" 205 

b 

c 

p 
Fig. 1 

geneous phase, or two phases of this kind, occupying the whole of the 
vessel (Fig. 1). 

The conditions that we shall derive make the first variation 
3 y p(r - iz l)dk equal to zero. For  these to lead to the integral being a 

minimum we need to show that 3 2 f > 0. Now 

e,p---~ [p(~ - t,1)] dk  

o r  
2(er + p(e2r 2) > 0 

jul 

I I 

Fig. 2 
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This last condition is simplified when we write 1IV in place of p; it 
becomes then 

(O2q, IOV2) > 0 or -(Opt~V) > 0 

An arbitrary amount of material cannot therefore distribute itself in a 
vessel of a capacity determined by the requirement that the phase be homo- 
geneous; that is, if the quantity is supposed given, e.g., unit mass, it cannot 
be distributed homogeneously in a vessel of any capacity whatsoever. It is 
only when the volume has a value such that the curve of ~b is convex down- 
ward for homogeneous states that the phase is stable (Fig. 2). There is 
instability at volumes between the points of inflection of the curve, and in 
these cases there can be no homogeneous phase. The substance must divide 
itself into two different phases, each of the density given by the volumes 
corresponding to the points of  contact of  the double tangent. And even if a 
state were to be stable when homogeneous, but if separation is nevertheless 
possible, then the homogeneous phase will not be found. In these circum- 
stances ~b satisfies the condition of being at a minimum. But if the separation 
occurs, the sum of the values 'of ~b for the two layers is even smaller; this 
state has therefore the greater stability. The sum of the values of ~b is given 
by a point on the double tangent. We see therefore that the stability of a 
state shows that it can exist--but that to show the stability of a phase we 
must search for other possible states, for which the total value of ~b is less 
than the minimum previously found. If there is separation, we shall find 
certain points, namely those in the transition layer, for which the value of 
E - ~-1~7 is not solely a function of density, as had hitherto been supposed 
at all points in the vessel. In other words, these conditions which the two 
coexisting phases ought to satisfy are still open to the objection that they 
have been derived from an inadequate treatment. 

4. D E D U C T I O N  OF THE STATE OF EQUIL IBRIUM,  
T A K I N G  A C C O U N T  OF CAPILLARITY 

We shall obtain a complete solution of the problem of capillarity if we 
can express ~ - ~-177 at each point as a function of  the density at that point 
and of the differences of density in the neighboring phases, out to a dis- 
tance limited by the range over which the molecular forces act. We should 
therefore describe a sphere about each point of radius equal to this distance, 
assume an arbitrary distribution of matter within this sphere, and then find 
a way of expressing the energy and entropy as a function of the density at 
the center and of such parameters as are needed for the surrounding density. 
In choosing arbitrarily this distribution of density within the sphere of 
interaction we should naturally be guided by what we know in advance about 
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the state of equilibrium. We should therefore have regard both to sudden 
jumps of density as well as to continuous variations. The latter are always 
present. A layer of  a gaseous substance, condensed on a solid body, will show 
a continuous, even if rapid, variation, while the vapor above a liquid under- 
goes a condensation which, originally at least, will be continuous. 

However, the difficulty of obtaining an expression for the energy when 
there is a discontinuity of  density has led me to attempt the calculation only 
for the case of continuous variation. The energy does not then depend only 
on the density, but the other parameters which appear in the expression 

- ~-1~ for this point soon become apparent. 
In fact, if we draw a straight line on which we measure a distance h, 

then the new parameters are expressed by d p / d h ,  d 2 p / d h  2, etc. If  we know in 
advance that the density has a constant value in parallel layers, then the 
line should be drawn only in one direction, namely that perpendicular to the 
layers. 

5. CALCULATION OF THE ENERGY FOR THE CASE OF A 
CONTINUOUS VARIATION OF DENSITY T H R O U G H  
PARALLEL LAYERS 

Let us consider a liquid in the lower part of a vessel with vertical sides, 
with a saturated vapor above it. Let the densities be pl and p2 with pl > p2, 
and let the surface of separation be horizontal. This can be brought out only 
under the influence of gravity, but we put aside the useless complications 
which arise from external forces, and we allow gravitation no other role 
but that of keeping the layers planar. If, however, the inconsistency of  such 
a course raises objections, then we could take a horizontal membrane of 
liquid separating two gaseous layers. 

Let us draw now a straight line perpendicular to the layers, on which we 
denote a distance h. Let h = 0 be taken in the middle of  the greater of the 
two densities, that is, pl. At this point the energy per unit mass is a function 
of  pl only and can be represented by ~ --- C - a p l ,  where a is the constant 
which enters in the equation of state when one takes unit density to be that 
of  the vapor at 0 ~ and 76 cm pressure. The constant C is the kinetic energy, 
which can be treated as invariant, since ~-~ remains constant. If  we now move 
unit mass from the zone where the density is constant pl to a point in the 
intermediate layer where the density is p and the energy ~, then we no longer 
have at this place the relation ~ = C - a p ,  except in one particular case, 
and that is when the sphere of attraction centered on the point considered 
has in its lower half a greater density precisely equal to and distributed in 
just the same way as the lower density in the upper half of the sphere. We 
can conclude at once that the correction to the equation ~ = C - a p  is not 
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confined to a term in dpldh. I f  f (h) is the force holding back the unit mass 
as it rises, then 

! , h  

= el + �89 f (h)dh (5.1) E 

d 0 

In fact the work of bringing about  the travel through the distance h is 

f2 f(h) dh, and half of  this work is recovered in the form of an increase of  

energy of the particle considered; the other half is added to the energy of 
the surrounding matter. We must therefore determine f(h) to know the 
energy of unit mass at height h. 

To do this we suppose for the moment  that the layers acting on the unit 
mass are situated at distances u from the layer that encloses it. We take u 
positive for layers above this, and negative for those below. To f indf(h)  we 
must subtract from the attractive force of  the lower layers, directed down- 
ward, that of  the upper layers directed in the opposite sense. 

Let us then cut in a lower layer at distance u a ring of thickness du, 
whose center is the foot of  the perpendicular dropped from the point at 
which we propose to find f(h).  Let t be radius of  this ring, and 2rrt dt du 
its volume. The vertical component  of  the attraction is 

ph_~2rrt dt du (u/r)qo(r) 

where r is the distance f rom the point considered to any point in the ring, 
and ~o(r) the force between two unit masses at a separation r. The vertical 
component  of  attraction of the whole layer du is therefore 

ft ph_,2rrt dt du (u/r )~(r ) 
= 0  

where r 2 = u 2 + t 2 or r dr = t dt, so that the vertical component  can be 
written 

f f = oo du dr ph _ u27ru q~(r ) 

Let us now put q~(r) dr = d~(r) when the last integral becomes 
oh-~2rru ~(u) du, if we introduce the known limit ~(oo) = 0. Let us similarly 
put 2true(u) du = de(u); we can now represent the attraction exerted by the 
layer as - ph-u de(u). I f  the density of  all layers at distance greater than u 
remains constant, then their total attraction is Oh-~r a result which 
explains the significance of r That is, this function represents the attrac- 
tion on unit mass of  all layers between u and oo when they have a constant 
density of  unity. I f  the attractive power stops at the distance of the radius 
of  the sphere at attraction, then r represents the force exerted by a sphe- 
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rical segment  or  cap, start ing at a distance u, and filled with a substance o f  
unit  density. 

Let  there be two layers, one at h - u and the other  at  h + u; they exert 
together  a downward  force expressed by 

ar  { -  Ph- ~ + Ph + ~) 

F o r  the set o f  layers the downward  force is 

- d e ( u )  { P h - .  - ,~ 

or, integrat ing by parts,  

f Sph_L-'` 8ph+'`\ 
-r - ph+'̀ ]o ~176 + fo ,d,(u) d u  L 8u 8u 

The integrated te rm is zero at  the two limits; for  u = 0% since r --- 0; 
and for  u = 0, since O~-0 = ph+o. We have therefore 

Moreover ,  

Similarly, 

o r  

fo ~ f Oph_'` 8ph+~_'~ f(h)= r duL 8u - 8u ; 

8p~ u 2 82ph 
Ph-'` = Ph -- U-~-- + 2~ 8h - - -T '  

8 2 8Ph - "` 8Ph U u-Ph 
8"----U-- = -- 8---ff + 8h 2'  etc. 

etc. 

8ph + "̀  8ph 82ph 
= ~ + u etc. 8u vu -g~-' 

f ( h )  = 2 r  du ah 2! ah ~ ' "  

or, restricting ourselves to the two leading terms, 

- 2  8ph ( ~ 2 83ph (~ u2r du 
f(h)  = 8h Jo r  2! 8h a Jo 

The second of  these integrals is much  smaller than  the first since each 
element of  the second contains an addit ional  factor  o f  u~/2, and u is always 
very small, at  mos t  equal  to the radius of  the sphere o f  at traction.  The first 
o f  these two integrals is nothing but  the quant i ty  K of  Laplace,  for  a density 
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of unity. The missing integral f o  u~b(u) du is his quantity H for the same 

density. 

We find for f~ f ( h )  dh 

- 2(o  - f o  , tu - - u e,(u) a u  

Since the origin of h is in the homogeneous fluid, where the density is p:, 
we have (d2oh/dh2)u= o = O. 

Equation (5.1) therefore becomes 

Jo f; oo 1 dZp u2~b(u) du 
�9 = C - a o :  - ( p  - p : )  ~b(u) d u  - i d h  -'--~ 

From the way it occurs in the equation of state we have a = f o  ~(u)  du; 

and if we put 

fo f0 c: = u~b(u) du and e2 = u2~h(u) du 

we can represent the energy of unit mass at point h by 

= C - ap - �89 d2p/dh z 

If  in the calculation of 0h-~ and On + ~ we had not limited ourselves to a few 
terms, we should have found 

c2 d2p ca d~p 
�9 = C - a p  2 ! d h  2 4 ! d h  4' etc. 

It is certainly striking that the term thought by Laplace to be charac- 
teristic of capillarity is just that missing from the equation for the energy, 
and which therefore should be missing also in the subsequent development 
of this theory of  capillary action. The term which should account for these 
phenomena is c2, and this quantity is as many times smaller than e: as c: is 
smaller than a. This circumstance could easily lead to the belief that we 
should find from the hypothesis of a continuous variation of density that 
the capillary energy would be so small that it disagreed with the value found 
experimentally, at least unless we ascribe to the sphere of attraction dimen- 
sions which, in their turn, will disagree with other observations. We show 
below, however, that these difficulties are imaginary. A more serious obstacle 
arises in trying to decide if the expression �9 = C - ap - �89 d2o/dh 2 is an 
adequate approximation. The successive coefficients, c 4, c 6, etc., are of such 
size that c~/c,~ is of the same degree of smallness as c4/c2 and c2[a, an order 
that we can put equal to that of the square of  the radius of the sphere of 
attraction. The successive factors by which these terms are multiplied can, 
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however, be increasing, since we can consider (d~pldh2)/p = (d~p/dh~)l(d2p/dh2), 
etc., as inversely proportional to the square of the thickness of the transition 
layer. Everything depends, therefore, on knowing if this thickness is large 
relative to the radius of the sphere of  attraction, and it seems to me that there 
is nothing against this supposition; on the contrary, optical observations 
seem to show that it really is so. While this point would justify a more pro- 
found examination, I shall provisionally restrict myself to the term containing 
the factor c2, and return in Section 15 to the complete equation. 

Before being able to give a value to ~b = e - ~r/, we must resolve 
the question of whether the value of ~ in the transition layer is determined by 
the density alone, as I think to be the case. Gibbs himself evidently inclines to 
the same view (p. 382 [p. 221 ] of the well-known memoir). The entropy, it seems 
to me, is determined at each point by the molecular speeds and the number of 
collisions. Be that as it maY, we lack all evidence from which we could deduce 
what the effect on the entropy would be of  a change of state in the surrounding 
mass. I therefore think it excusable, if not quite justified, if I take the entropy 
to be a function on13~ of  density in the following development. 

6. FORM OF THE INTEGRAL OF THE FREE ENERGY FOR 
THE CASE OF V A R I A T I O N  OF DENSITY A N D  DEDUCTION 
OF THE LAW OF VARIABIL ITY  OF DENSITY 

The free energy, for a phase of specific volume V, is equal to -fp dV.  

If  the equation of  state is known, we can therefore calculate it at once. If  
p = R r / ( V -  b) - a / V  2, then ~b = -R~- ln(V - b) - a /V,  or - - R T l n ( p  -~ -- b) 
- ap. For the case of variable density we must, from what has been said 
above, add to this the term -�89 d2p/dh 2. In order to separate the con- 
sequences of a particular form of  the equation of state from those that are 

independent of it, I shall represent - f p  d V  by f ( o ) .  The total value of the 

free energy is therefore ~ p[f(.p) - �89 d2p/dh 2] dh, if the vessel has unit 

cross section and parallel walls, while f p dh represents the fixed quantity of 
matter. 

Hence at equilibrium 

8 f p [ f ( p )  - �89 d2p/dh 2] dh = 0 

when f p dh = C. 

Let us subtract/*1 times the second integral from the first, and we have 
then only to find the conditions under which 

8 ~ p[f(p) -- �89 d=p/dh 2 - Ixzl dh = 0 
3 
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This is a known problem in the calculus of  variations whose solution 
can be described succinctly. The integrand contains two parameters, O and 
(d2p/dh2), and we can vary both, but not independently. 4 

Let us, for brevity, denote the integral b y / ,  so that 

f [  ~p#f c2 d2P dh 2 f r /d2pk M= 3p f(p)+ p /~, dh-  p3t--~-~ldh 
Integration by parts changes the last term into a form in which 3 0 

appears in the integrand. 
Thus 

[d2p, c2 f o @ 

C2 + 

So that 

c2 dp + + d2p dh t 

c2 f d2p -~ 3O---~ dh 

8I= 8p f(p) v p -  - dh 

The conditions which must be satisfied for all the contents of  the vessel 
to be at equilibrium are found by putting the coefficient of  8p equal to zero, 
so that 

at" d2p 
f(p) + p ~ p -  c 2 ~ -  t~, = 0 (6.1) 

At the boundaries of  the vessel liquid and vapor are sufficiently far 
f rom the transition layer that we may suppose the densities to be homo- 
geneous; we have therefore d2p/dh 2 = 0. In other words, we recover the 
same conditions of  equilibrium that we had when we had neglected capillary 
phenomena, namely 

r  - rl~l + pl V1 = / z l  and r - "r1~2 + pl V2 = 1~1 

/~1 is therefore what we ordinarily call the thermodynamic potential. Since 
dp/dh always vanishes at a sufficient distance from the transition layer, the 
conditions for the integrated terms to vanish are satisfied. 

* We do not consider here possible changes of c2 with the state of the fluid, that is, with 
p and T. See Appendix. 
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Yet if we calculate the magnitude of E - r ~  + p V for different parts 
of the transition layer we do not obtain the value tL~. The difference is 
found, in general, to be 

or, if we restrict ourselves to the first term, 

�9 - r l~ + p V -  ~1 = �89 d~p/dh 2 

We might consider nevertheless that p, for all parts of  the vessel and 
so for the transition layer, represents the magnitude of -~f/c~V, or, in other 
words, the function of V given by the equation of state as the value o f p  for 
a homogeneous phase when the density is uniform. We cannot therefore 
consider p in the transition layer as representing the pressure, properly 
defined. The value o f p  at any arbitrary point is a function which represents 
the pressure when the portion of material considered is not surrounded by 
parts of a different density. As soon as we leave the transition layer the 
value of  p and of the real pressure coincide. 

Equation (6.1) defines the law of  variation of density in the transition 
layer, as follows 

c2 d~p/dh 2 = f (p )  + p ~f/~p - I~  (6.2) 

It is not hard to see how the density of the liquid passes, according to this 
equation, into that of the vapor. Let us write it 

c~ d~(1/V)/dh ~ = r + p V -  t~l (6.3) 

where ~b' and p represent the values of  these functions in a homogeneous 
phase of  specific volume V. In Fig. 2 the course of  ~' is represented in the 
following way. If  we place a tangent to the curve of ~b' the intercept on the 
axis of ~h' is equal to ~b' + pV,  as in Eq. (6.3), where tzl is the intercept of 
the double tangent on the ~b' axis. On the liquid side of the transition layer 
we have ~b' + p V  =/~1 and d2p/dh 2 has therefore an initial value of zero. 
At larger volumes, and so smaller values of p, the function ~b' + p V - tzl 
is negative. This holds true as long as we have not reached the volume for 
which ~b' + p V -  I~ has returned to zero. This volume can be found by 
drawing a tangent to the curve of  ~b' from the point on the ~b' axis where it 
is cut by the double tangent. The point of tangency is necessarily on the 
unstable part of the isotherm. For  larger volumes ~b' + p V  is always larger 
than t~; d2p/dh 2 therefore remains positive until the density of the vapor is 
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h 

Fig. 3 

Pg 

reached, where it finally returns to zero. I f  we take the axis of  h perpen- 
dicular to the transition layer, the density will be represented by a curve of 
very simple fo rm-- the  full line in Fig. 3. 

We could also have deduced this change of density by using Fig. 1. 
In this figure ~' + pV is the ordinate. It  is true that the abscissa is now the 
pressure p, but since the course of  the isotherm tells us the relation between 
p and V, or between p and O, this causes no problem. The value of/xl is the 
ordinate of  point e in this figure. Starting from e and remaining on the 
liquid branch, we next reach point c. The quantity ~b' + p V - t~l is negative 
in this interval and has its greatest negative value at point c, and similarly 
for d2p/dh 2. I f  we now leave c on the unstable branch ~b' + pV returns 
toward tx~. The difference becomes zero at a point between e and b, which 
can be found by drawing a line parallel to the p axis through point e to cut 
the curve eb. At point b, the function ~b' + p V -  tz~ reaches its greatest 
positive value; it is here therefore that we have the value of p, and hence 
of p, for which the curve p = F(h) has the greatest value of d2p/dh 2. 

7. I N V E S T I G A T I O N  OF STABIL ITY 

I f  the change of  density in the transition layer is as described above, 
then there will be certain densities which would belong to the unstable state 
if  they were to exist for a nonzero space; this is a necessary consequence of 
the hypothesis of  a continuous change of density. I f  we can show the stability 
of  such a distribution of density, it will follow that phases that would be 
unstable when distributed over a nonzero space can be stable when they 
become the transition between different densities. 

We must look for the criterion of equilibrium in the sign of the expres- 
sion 32L I f  this expression be positive, the free energy is at a minimum when 
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matter is distributed in the way described, and such a distribution should 
therefore be possible. For  a variation, we have 

I {  c2 d~p } l f dh ~ -2 c2 d2P dh 2 AI = 8. p dh f(p) i~ + 8 2 p dh f(p) 

(7.1) 

while from (6.2) it follows that 8 f will be zero, so that the sign of AI will 

be that of the second term in (7.1). Let us write q for d2p/dh 2 and henceforth 
drop the subscript 2 from c2. That is, 

I = .(dh {p[f(p) - tzl] -- �89 

= .f dh {80 (~l~p)~ . . . . .  ~[pf(p) - ptzl - lcpq] - 81 �89 8q} 

8 2 1 = ~ f d h { ( S P )  2~2pf(p)op2 cSoSq}  

Let us rewrite the second term as 

Since 

- �89 f dh 8p 8q 

~q = ~(d~pldn ~) = (didk)[~(dpIdn)] 
we can write for this expression (dropping for the moment the factor -c f2) ,  

-&-dh 

- -  

dh J - - f 8p dh -dh 2 

The integrated terms cancel, 8 dp/dh having the same value as dSp/dh. We 
have therefore 

1 f o (~2[pf(p)] d28p) 82I= ~ dho#~. ~ 8 0 -  c dh 2 j 

= 1 f dh o (O2[p(f(p) _ tzl) ] d28p\ op\ - c dh2 j 

while 
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Now we can always find a set of values for 8p such that 

a2[p(f(o) _ b*~)] d28p ' 
8p 2 3p' = c dh 2 

and so for which 321 = 0. 
Such a set of variations occurs if we displace the layer parallel to itself, 

while conforming to the law of variation of densities for the case of equi- 
librium, and at the same time letting 80' be the variation of density occurring 
at each point. 

That is, let p = F(h), and let the variation 8h be denoted by ~; then 
3p' = (z(dp/dh). The state of equilibrium of  the layer satisfies the equation 

d2p 
8p [p(f(p) - ,u,,)] - C-d- ~ = 0 

and since, by differentiation of the equation of equilibrium 

we find also 

or  

a= d2{dP)dh Op--'-~ [P(f(P) - /*i)] dp = c ~ 

a= de d 2 ( 
cqp---  [p(f(p) - p.1)]u = c ,l,c  

8 2 d 2 
~7 [P(f(P) - /*~)] 8p' = c ~ (Sp') 

Such a set of variations can be imagined, but it does not satisfy the 
conditions of the problem, at least when we have liquid in the lower part of 
the vessel and vapor in the upper. In the second case, when we have vapor 
above and below a liquid membrane, this set is possible. By displacing the 
membrane we have therefore realized a state of neutral equilibrium; but 
even although this set of variations of  p is now possible, we must, in order 
to examine the stability of a given density in the transition layer, consider 
also another set of variations 3p, which we can represent by t 8p'. We have 
then 

d2(Sp) . d2(ap ') dt d(Sp') d2t 
dh 2 = ~ + 2 dh dh + 8P'dh---~ 

which gives 

1 f fa2[p(f(p) - /,,)] 3 = I = ~  t 3p' dh l, ~-/2 t Sp' 

d2(Sp ) dt d(ap') , d=tX) 
- c t - - - ~ - -  + 2 -~ ~ + 8 p - ~  ) ~ 
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or, in a simpler form, 

c f { dt d(~p') d2t~ 
~2I= -~2 t~p' 2dh--dh + ~P'~-~dh 

= -2c t dh d(Sp') 2 + (Sp,)2.d~ art 

Integrating by parts, 

[2 dt] + c~" , 2 /d t \ 2  
~21= - t(~p')2-~ _ + =2 J (~O ) t-~h ) dh 

The integrated terms, which we can write as - ( c /2 )  8p 8/(dt/dh),  cancel at 
the limits, where the densities of the liquid and vapor are fixed, and it then 
becomes a simple matter to find the influence of any distribution of density 
in the transition layer. There remains only the term 

821 = �89 f (SO')2(dt/dh) 2 dh 

This integral is positive since all its elements are squares. It is zero only if 
t is constant, but then we recover the parallel displacement already considered. 

8. THE C O N S T A N C Y  OF THE PRESSURE, BOTH IN THE 
INTERIOR OF THE LIQUID A N D  THE V A P O R  A N D  IN 
THE T R A N S I T I O N  LAYER 

We have obtained Eq. (6.2) for the state of equilibrium. If  on the right 
we replace p by 1/V, we have 

- f  p d v  + p V  - = c d2o/ah 2 (8.1) 

where p now represents the pressure of a homogeneous phase of specific 
volume V. By differentiation, 

V dp = c d(d2p/dh 2) or dp = co d(d2p/dh 2) 

and by integration of  the last equation 

p + k = c{p d2p/dh 2 - �89 2} 

We can establish at once the meaning of the new constant k. In the middle 
of  the liquid or of the vapor, where both do/dh and d2p/dh 2 are zero, we have 
p + k = 0 or k = - P l ,  where Pl is the external pressure, which has there- 
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fore the property of being a constant throughout the whole extent of  the 
vessel. We shall write henceforth for the transition layer 

p l  = p - c ( t ,  d 2 p / d h  2 - � 8 9  

and if we substitute for p from the equation of state, we have 

Pt = R ' r ( ~ -  b ) -~  - ap~ - c{P d2p~ 21(d~)2} 

( 8 . 2 )  

This last equation allows us to find the pressure when we know the density 
p and the values of  dp[dh and d2p/dh 2 in a planar layer. 

It  follows that the pressure in a planar layer is independent of  the sign 
of dp/dh, a result which could have been seen in advance, for the sign de- 
pends on the direction in which h is increasing, which can clearly have no 
effect on the pressure. The sign of  d2p/dh 2, on the contrary, is independent 
of  the direction in which h is measured. 

We can now calculate the value of ~ - ~'1~ + Pl V which we need in 
order to find the capillary energy. Let us write 

- TI~ + p l V =  ~ - -  ~'1~ + P V + ( p l - p ) V  

when the condition of equilibrium gives us, for the first terms, 

- ~'1~ + p V  = 1"1 + �89 d2p/dh 2 

The last term (Pl - P )V  = (pl - p)p-  ~ follows from (8.2), and so we have 

- + v = + - 

Whether we take for the thermodynamic potential of  the portions of  fluid in 
the transition layer either ~ - TI~ + p V  or e -- ~'~ + p~V, we cannot 
ascribe to it the constant value t*~ found at any point in the vessel where 
dp/dh and d2p/dh 2 are zero. It  is, however, this assumption that Gibbs makes 
when he deduces his fundamental equation (502), as he shows on p. 384 
[p. 223]. However, his demonstration seems to me to contain an error of  
the same kind that we should have committed if, in the integral that also 
contains derivatives--in our case it has not only p but also d2p/dh2--we had 
considered variation with respect to p only, and neglected the necessary and 
consequent variation with respect to d2p/dh 2. In my view, the fact that the 
potential E - ~1~ + Pl V is, on average, greater in the transition layer than 
in the homogeneous phases is just the reason for the existence of the capillary 
energy. Gibbs rectifies his error, it is true, by introducing the term ~ dS 
into Eq. (493), and so his Eq. (502) is perfectly correct; but he should have 
had other reasons for introducing the term e dS, and it is, I think, the 
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inequality of  the thermodynamic potential which should have been his 
starting point. 

9. CAPILLARY E N E R G Y  

Let us consider a space where there is a constant pressure Pl and a 
constant temperature r l ,  where, for example, there may be a liquid and its 
saturated vapor. Let us now divide in this space a portion of matter into a 
part  of  specific volume V2, energy e2, and entropy 72, and one of specific 
volume V1, energy q ,  and entropy 7~. I f  we have only to supply heat to 
bring about  this new state, then 

q = ~'171 + p l V 1  = E2 - r172 + P l V 2  

This follows at once from the differential equation 

dE = ~1 d7  - P l  d V  

Since Pz and ~-1 are,constants, integration gives 

q - E2 = " ~ ( 7 ~  - 7 2 )  - p l ( V 1  - V2) 

I f  ( q  - r~7~ + p l  V O  > (~2 - r~72 + p l V 2 ) ,  then in addition to the 
heat supplied, we must also furnish energy of  a special kind, and so do an 
amount  of  work equal to the difference. 

The case of  a capillary layer is one where there is equilibrium notwith- 
standing an excess of  e - rz7 + p~ V in this layer over the value found in 
other parts of  the system. I f  therefore, as before, e, 7, and V represent energy, 
entropy, and volume per unit mass, then 

,~ = f p dh  (E - r~ 7 + p l  V - t ~ )  (9.1) 

is the capillary energy per unit surface. I f  S is the cross section of the vessel, 
then the capillary energy of the free surface of the liquid is eS. 

Equation (9.1) is basically the same as Eq. (502) of  Gibbs, as I shall 
now show. Gibbs '  equation is written 

He introduces a surface of separation, which need not coincide with the 
surface of  discontinuity, but which is parallel with this plane and at a very 
short ,distance from it. 

The quantity eE is the excess of  energy, in the transition layer, over that 
which we should find if, on both sides of  the surface of separation, we chose 
an energy density near this surface equal to that found at a great distance; 
and similarly for 7E and mE. The last quantity is therefore the excess of  



220 J .S .  Rowlinson 

matter present in the surface layer over that found on the supposition above. 
Let p1 and 02 be the constant densities, pl' and p2' the real densities, E~ and 
E2 the constant energies per unit mass, e~' and E2' the real values, and similarly 
for the entropy. We have then 

and so 

EE -- TI~E = i Pl' dhl (El' -- Tl~1') -~- f P2' dh2 (E2' - TI~s') 

- f p1dh~ (e~ - v~U~) - f p2 dh2 (~2 - r~U2) 

Let us add fPl  dhl to the first positive and the first negative integrals, 

and similarly f pl dh2 to the second positive and negative integrals. We do 

not change the value of the right-hand side and obtain 

EE -- T~n~ = f p~' dh~ (~1' -- ~'1n1' + P~ V / )  

+ f p2' dh2 (~2' - ~-ln2' + pl V2') - ~i f pl dh~ - ~2 f p~ dh~ 

= f pl' dh~ (~" - nn~' + Pl I"1' - m) 

+ f P2' dh2 (~' - "~1~' + Pl g~' - m) 

+ l~{ f p~' dhl + f p2' dh2 - f p~ dh~ - f p2dh2} 

The coefficient o f / ~  is what Gibbs calls me and, whatever the position 
of  the surface of separation, the other integrals can be combined to give 5 

f p dh (~ - "rl~ + pl V - ix1) 

We find therefore that 

~E = "q~TE + s f p dh (~ - ~1~1 + p l V -  t~l) + I~lmE 

5 This and preceding quantities should be multiplied by S, the cross section of the 
vessel. 
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The definition of  a, as it follows from Gibbs' development, leads directly 
to the same function as the theory developed in this paper; that is, we 
arrive again at (9.1). 

This integral should really be taken over the whole height of the vessel, 
but in practice we need to take into account only those points where dp/dh 
and d2p/dh 2 have a nonnegligible value. We have shown above that we can 
equally well write 

However, the two terms in this integral are equal when we take the integration 
over the whole height of  the layer: 

= _ J p - - ~ d h  

At the limits we have dp/dh = 0. We can therefore write for ~ either 

o r  

= c f (dpldhY dh 

F 
= - c ) p(d2p/dh 2) dh (7 

However, all parts of  the layer do not contribute to the capillary energy. 
Let us examine this point by writing (9.1) as 

or, from (6.2), 

(7= f p �89 2) dh + f (p~ - p)dh 

Let ~b' and p be again the values of these functions in a homogeneous 
phase, so that from (6.1) 

= f dh {pI - p + �89 / + P V -  ~I)} (7 

If  ~ comprised only the first term, f dh (p~ - p ) ,  then all the layers 

whose densities are above that of the point where the empirical isotherm 
cuts the theoretical one on its unstable branch would contribute positively 
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to the integral, while, conversely, all layers of  lower densities would con- 
tribute negatively. The addition of the second term, however, brings the 
limit where the positive values pass the negative nearer to the side of  the 
lower densities. At the start of  the layer (p~ - p) + (~h' + p V - /~1)/2 V is 
zero. Let us return to Fig. 1; the maximum value is on the unstable branch 
a little above c. For  a point at the height of  e on the unstable branch, we 
have ~b' + pV - / z l  = 0; but since p~ - p is still positive, we have not yet 
reached the point where we pass into the region of negative values. At a 
point vertically above e we have pt  - p = 0, but here ~b' + p V - /L~ is 
positive, so this is again not the point at which the change is reached. At 
the extreme value of h the Value is zero, as at the start. But it is easy to show 
that the value is negative at a short distance f rom this limit. We have 

I I ~ ' + P V - I ~ I t  I f  ~b'+PV-tz~ VI d p ~ - p + ~  -~ = --~ dp+ ~-g d 

since d(~b' + p V - t~l) = V dp. 
I t  follows from the theoretical isotherm that the value o f p  is decreasing 

here, and since ~b' + p V - t~l can be neglected, that differential ( - �89 is 
positive. That  is, in its limiting behavior the function is increasing, and 
since its final value is zero, it must be negative at a small distance short of  
the limit. The meaning of  all this is that those layers that we can think of as 
expanded liquid contribute to the capillary energy, while those that we 
think of  as compressed gas diminish this energy. No doubt this rule is quite 
general. Thus a gaseous layer, condensed on a solid boundary, diminishes 
the capillary energy of  the surface layer. 

10. CAPILLARITY  FOR A SPHERE 

It  is worthwhile for several reasons to solve the capillary problem for 
cases other than that of  a mass bounded by a plane surface. Let us choose, 
for example, a spherical mass, so that we can remove all considerations of  
gravity f rom the problem. 

I t  is of  interest to see how the capillary pressure comes into play under 
these conditions, and how far the properties of  a spherical surface layer 
differ from those of a planar layer. We can then decide how far we are 
justified in considering, as we usually do, that the two cases have equal 
energies per unit surface. Let us take a spherical mass in a vessel of  the same 
shape and with the same center; the density can then be taken to be constant 
throughout any spherical layer. The only difficulty is the calculation of 
for unit mass at a point in the surface. 

To do this let us calculate the force exerted by unit mass toward the 
center when this mass is in a layer of  variable density at a distance R from 
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the center (compare the method of calculation in Section 5). A plane layer 
perpendicular to the radius R exerts an attraction 

f r= | p2~,u du ~(r) dr 
= 4  

where u is the distance of  the unit mass above this layer. Let P be the foot 
of  the perpendicular and Q an arbitrary point in the planar layer. Integrating 
by parts, we find for the attraction 

2rru du(pe~(u) + ~ i ~  ~(r) dr ~ )  

Now we can put (dpo/dRo)(dRo/dr) for dpo/dr, and since 

R J  = ( R -  u) 2 + r 2 -  u 2 = R 2 -  2uR + r 2 

we have also dRo/dr = r/R o or dpo/dr = (dpQ/dRo)(r/RQ). If we are content 
with the same degree of  approximation to which we have restricted our- 
selves in the case of plane layers, that is, if we neglect all coefficients above 
c=, we can put dpo/dR Q = dpe/dRp, and equate the attraction of  the layer to 

2~u du ~(u)pp + ~(r) Rp dRp 
= 4  

o r  

ur ~ 4 )  2~,u du ~(u)pR-4 + ~ dud 

Subtract from this the value of  the force of attraction exerted upward by a 
layer, namely 

ur ~ 4 )  2~,u du g(u)pR + ~ + ~ dud 

to give the force directed toward the center 

fo ~ f(R) = - 4 r  {PR-u - PR+u} 

+ fo ~ ur a, ,(.! a(p,_ 4) 1 a(p, +4)\ (np aR~ ~p ~ ) 

f = r au d(pR-4 -- p~ + 4) 
du 

~o 1 d(pn_~t ~ pr~+4) 
+ fo ur d, 
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In the first integral we can restrict (d/du)(p~_ ~ - pR + ~,) to the two terms 
- ( 2  @R/dR + u 2 dapR/dRa). Since 

1 d(pn+u) 1 clpR [1 d2p~ 1 dpn] 
Rp an,  = + ul,ye-  R 2 aR! +'"  

we can replace 

1 d [ 2  d2p. 2 dpR] 
Rp dRp R 2 dR ] 

We then have 

( 2e dp d3p 2c d2p'~ 
f ( R )  = - 2a R 2 dR + C--d-~ + -R-d -~J  

and the value of e becomes 

c d2p c d o 
= C - ap 2 d R 2  - ~ - ~  

The conditions of  equilibrium are now given by the equation 

3I = 3 47rR 2 dR p f ( p )  - 12,1 R dR 2 d ~ J  

After reduction, the coefficient of  3 0 , which must be equal to zero, can be 
expressed 

e f  d2p 2e do 
f (p )  + p ~p - C dR 2 R dR tzl = 0 

[The integrated terms require that dp/dR and 3(dp/dR) vanish at the limits.] 
In this case also we see that where there is a uniform density, and so 

where dp/dR and d2p/dR 2 are zero, we must have f ( p )  + p df/dp = 1~1; 
that is to say, the value of  this function must be the same at all such points. 
I f  therefore we assume that the liquid is placed in the middle and the vapor 
at the outside of  the vessel, we shall have 

~z - "r1711 + p l V l  = E~ - -  "rl~lv + p ~ V v  

However,  the values of  p~ and p~ are no longer equal, as is the case for a 
planar boundary surface. To find the relation between these two quantities 
we can choose between two different routes. First, we can differentiate the 
equation of  equilibrium, 

a f  dZp 2c dp (lO.1) 
f (P)  + P To - = c2k-  + -g  )-k 
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that is (cf. Section 8) 

- f  p dV 

It follows then that 

l d2p'~ 
V dp = c d [-d-'~ ] 

We obtain by integration 

p + k = c PdR 2 2 ~-~] ) 

d2p 2c dp 
+ p V -  i~l = c-d-~ +-~--d~ 

1 
,, p dp _ 2 o f  dR [ dp ] 2 

+ zc -~ -d-k - g  \-d-k! 

Let us now consider two points, one inside the transition layer--and 
so, on our hypothesis, in the homogeneous l iquid--and at distance R1 from 
the center. Let the pressure at this place be p~. The other point is outside 
the transition layer, that is, in the vapor at a distance R2 and with a pressure 
p~. We can write 

Pz - Pv = 2c -~ --~ dR 
1 

Had we assumed that the vapor had been at the center and the liquid on the 
outside, then we should have found that the pressure inside exceeded that 
outside by 

~ "22c idp'~2 

where the integral is taken through the whole thickness of the transition 
layer. 

As for a plane surface, let a denote 

c (dp/dn) ~ dR 
J. 

which we shall shortly examine more closely, and let us ignore the small 
variation in R arising from the nonzero thickness of  the transition layer. 
Then 

PI=P~ + 2 a i R  

This is the well-known formula of  the usual theory of capillarity. 
If  the liquid is in the middle of the vessel and the vapor around the 

outside, then e - ~'1~7 + p V  is the same in the two homogeneous phases; 
but since the pressure is different--that of the liquid exceeding that of  the 
vapor-- the state of both the saturated vapor and the liquid differ from 
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those found for a planar surface. Figure 1 allows us to determine the states 
of the phases under these conditions. We merely draw a short line parallel 
to the p axis, with one of its ends resting on the branch describing the state 
of the vapor and the other on that of the liquid, and of a length equal to the 
difference of  pressure. Since the pressure of the liquid is greater than that 
of the vapor, this line lies above point e. We see therefore that both vapor 
and liquid are in compressed states. In the opposite case, when the vapor is 
in the middle and the liquid in the outer part of  the vessel, the small line 
lies below point e, and the state of  the two phases is reversed. 

In the first case the excess of the pressure of  the vapor over the normal 
saturated vapor pressure Ap~ can be found as follows: 

A(r + p v )  = Ap,/p, = ~,p~/p~ 

Now Apz = 2aiR + Ap~ and so 

Ap~ = p~ 2a 
O~ - -  Pv R 

Conversely, when the vapor is in the middle and the liquid on the outside, 
we have Apv = - [ p v / ( p t  - p~)]2a/R. These results are known, but have been 
derived here in a novel way. 

We can now determine the function p in a second way by integrating the 
equation of  equilibrium with respect to p. 

From Eq. (10.1) we deduce that 

p(~b' + p V - tzl) - dp = ~2 \ - ~ ]  + 1 ~ \ - ~ ]  dR 

or, when the second point is placed in the homogeneous region, 

(ep = 
P' - P~ = "-R \-dR] dR 

The first deduction gives us the value of p at a point in the transition layer 

{ d 2 p  l ( d p } = + } 2 e p d p  f : 2 c ( d p ) 2  
p - p~ = c P dR2 2 - ~  R dR 1-- ~ - ~  dR 

o r  

{ ( R 2 c ( d O } = d R }  ( d2p 1 ~dp'~ 2 2 o d p ;  
P - P z -  JR, R ~ = c).p-~--~ 2 \ -~1  + R dRJ 

The question now arises as what we must consider to be the pressure in 
an arbitrarily chosen layer. It is the quantity Ps, where 

P* = P '  - , X \ ~ - ~ l  d R  (10.2) 
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On introducing the equation of state, we get 

Ps = R'r - b - ap 2 -  c P dR 2 2 \-d"R] + ' -R  

The term we have subtracted from Pz to give the true pressure in (10.2) does 
not disappear when we make dp/dR and d2p/dR 2 vanish in the layer itself. 
On the contrary, it represents the sum of all contributions from distant 
layers that can be thought of as influencing the pressure. Now the true 
pressure in a layer should be determined by the state in that layer, that is, 
by fi, dp/dR, and d2p/dR2; and it is just this that Eq. (10.3) expresses. Equa- 
tion (10.2) gives the pressure at a point in the layer as a function of that at a 
distant point and the density changes that lie between these points, while 
Eq. (10.3) expresses it as a function of the properties at the point in question. 
We have to examine first what we must take the external pressure to be, 
before being able to find an expression for the capillary energy per unit 
surface of a spherical mass. 

To obtain the energy of the whole layer we must determine 

f 4rrR dR p{e - + V - I X 1 }  q;'l"f] P. 

If  we write 

e -  ~'I~I + P ~ V -  Ixl = ~ - -rl~ + p V -  I~I + (Ps - P ) V  

if we remember that 

~f  c dp c d2p 
- ~'1~1 + Pz V = f ( p )  + p ~p R dR 2 dR 2 

and use again (10.1), then we shall have 

c dp + c d2p 
e - 7171 + p V - btz = -~ -dR 2 dR ----7 

On using the equation 

{ d2p 1 [dp'~ 2 2 p d p )  
p~ - p  = - -c  P dRz 2 ~,'-d--R] + -R--d-R 

we obtain 

f 4rtR p(e - ~-1~1 + P 8 -  l~1) dR V 

dp 2 1 d Rp~--~ 
= c 4~rR 2 dR - ~  2R 2 dR  
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The terms that comprise this integral vanish in all parts of the space 
where dp/dR is zero; hence it is zero for both homogeneous liquid and vapor. 
In the capillary layer, since R2p dp/dR vanishes at the limits, its value becomes 

4~R2(ao/aR) ~ dR c 

If  we neglect the variation in R, the layer having a finite thickness, then the 
energy per unit surface is 

= c f (dp/dR)  ~ d R  

In the case of  a planar layer we determine p as a function of  h from 
Eq. (6.1), while for a spherical surface 

c d ( dp ) Of 
R 2 dl~ R2 ~ = f (p)  + p ~p - tzl 

Since R is large relative to the thickness of the layer, we can treat this 
difference of form as quite insignificant. 

11. VALUE OF THE CAPILLARY ENERGY NEAR 
THE CRITICAL TEMPERATURE 

In the expression 

= c ah) 2 ah = c (ap/ah) ao 
u 

we can replace dp/dh by a function of p of the kind we have deduced above 
(Section 6). If  the integration is then possible, we shall obtain ~ as a function 
of the two coexistent densities pz and pv. We need therefore the value of  
dp/dh, and this we can get from Eqs. (8.1) and (8.2). 

On introducing the equation of  state into (8.1) we obtain 

d2P P - -  R~I l n ( ~ -  b ) -  a p - / z l  c--.-~ =p  

and so we can obtain dp/dh from (8.2). We thus find for cr, 

f g =  (2e)~/2 r dp Pl - Iz~P - aP 2 -  R-r~pln - 

This result allows us to obtain at once a general property of ~, even without 
being able to carry out the integration. The terms under the root are neces- 
sarily of  the same dimensions. Consider the term ap 2; its integral will have 
the dimensions of p2a112, and so contribute to ~ a term kp~Z(ac) ~lz, where k 
is a numerical coefficient. 
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According to the theory o f  Laplace we have ~ = el . �89 p~)2, or  
= k'pz2ct. Since the radius o f  the sphere o f  at traction enters as a square 

roo t  in our  calculation o f  ~, we can deduce that  it has a size similar to that  
which follows f rom Laplace 's  theory. That  is, the values o f  el and (ac) ~I~ 
are o f  the same order o f  magnitude.  

Al though we cannot  in general calculate the integral ,,, we can determine 
its value near the critical temperature with sufficient accuracy. To this end, 
let us write 

~/2 r d V  i p ( V _  ~vz p l y  ~112 = (2e) Jr, - d V j  

and replace p and V by Epg and n Vk, where Pk and V~ are the critical values 
o f  p and V. We find 

[2cp'~1,2 f ,2 dn El(n - n~) - e dn 

We may expand the function 

f" 
f ( n )  = el(n - nl) - e dn 

in powers o f  (n - n 0 by means o f  Taylor 's  theorem. N o w  it is evident that  
f ( n l )  = 0, and since f ' ( n )  = el - e, we have also f ' ( n l )  = 0. Furthermore,  
i f ( n )  = - Oe/On, f " (n )  = - O%/~n 2, etc., and so 

f @ )  = - ( n  - nl)  + + 4, ) "" 

Near  the critical point  (~e/On)~ and (~%/~n2)~ are small, since they 
vanish at the critical point  itself. We can therefore see at once that  we must  
retain three terms in the series which multiplies (n - n~) 2, but  that  higher 
terms can be neglected, at least when n - n, remains Small. I f  we retain the 
three terms shown with their coefficient (n - nl) 2, then we can see that  the 
series is a square. When  solved as an equat ion o f  second degree, it should 
naturally give n~. as a root. I t  follows that  since f ( n )  contains (n - nl) 2 as a 
factor,  then equally it will contain (n - n2) 2. But we can also show this 
directly without  recourse to this argument  by considering that, for  n = n2, 
e must  take the value ~ .  Let us expand 

= ~ , + @ - . 1 )  + + ] .  \a,e/~ 

and putt ing E = E1 and n = n2 (liquid pressure = vapor  pressure), then 

t , /~  ~ + 2! \~,~l~ + 3! t~---~l~ = o 
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By comparing this equation withf(n2) = 0 (Maxwell's theorem), that is, 

we find 

82e] 1 . [8%k 
8n9.!, = --~(nz - n,)~-b--h-~n3) I 

and so can verify easily the statement above. 
We find therefore that 

1 1 8 % ~  . 
f (n )  = -7~ ~-~-~na)l tn - nl)2(n2 - n)2 

and so 

[2cp~]~'2[ 1 [8%] ]1/2 (.2 dn ( n -  n l ) ( n z -  n) 

Now at the critical point n becomes unity, and if we stay close to the critical 
temperature, nl is smaller than unity and n2 greater. So we can achieve an 
adequate approximation by putting n = 1 in the denominator and n = 
nl + A in the numerator. The integral then becomes 

 2-.1 dA. A[(n  -- nO -- •] 

and its value is ~(n2 - n@. 
Hence 

[2cpk'~ 112[ 1 { 0%'~ ]112 (na - n@ 

I f  we can equate (8%/8na)1 to --9, its value at the critical point from the 
equation of state, this expression becomes 

[2cp~]lz2[3~l/Z(nz - n@ 
a = \--~21 \g ]  12 

or, putting ao~Z[3 for Pk, 

= - (11.2) 

From Laplace's theory we have 

= p~z f u~b(u) du �89 - n~) 2 (11.3) O" 

J 
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Let us consider 

(ac)l'~ = { f  r du f u~r du} ~̀ ~ 

which is of the same order of  magnitude as f u~(u)du.  Then whenever 

n2 - n~ is not itself very small, we shall obtain about the same value for the 
capillary energy cr from either of the last two equations (11.2) or (11,3), 
without having to choose any particular size for the radius of the sphere of  
attraction. The only difference is that in Laplace's theory the capillary energy 
near the critical temperature is proportional to the square of the difference 
of density of  liquid and vapor, while the thermodynamic theory, with the 
hypothesis of a continuous density transition, shows that this energy is 
proportional to the cube of these differences. 

From the result e = -~z(ca)l/2pk2(nz - nl) 3 we can deduce how o be- 
haves as a function of  r, at least in the neighborhood of r~, since we know 
how n 2 -  na depends on the temperature. Mathias 6 has given empirical 
formulas for the liquid and vapor densities which we could use here, but 
since we have followed a strictly theoretical path so far, it is important to 
examine the extent to which theory can lead to these experimentally verified 
formulas. 

We have shown above that (11.1) is a perfect square, and so 

This equation should hold true as long as we remain in the immediate 
neighborhood of the critical temperature. 

The quantities (8~/8n)~, etc., do not have the values they possess at the 
critical point, but those that belong to nk + dn and m~ + din, where ~- = mz~. 
If  the state denoted by the index 1 is the liquid, then dn and dm are negative. 
By expanding 8E/Sn, etc., we find 

-~  1 = -~n ~ + \8n Om]~dm + ~-~n2 ) k d n  

(e q to q 

dm dn + ~-~na ] ~ dn 2 

dn 

o Ann. de Toulouse 5:1 (1891). 
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We thus obtain a relation between dn and dm by noting that (OE/~n)k 
and (~2E/~n2)~ are zero: 

2! 4! \-Z~n3 J ~ ~, \ O--~m J k dm 

1 g /  ~% \ 2 / 0Be \ _  \Ona]e{ 3ae'~ ] )  

The solution of  this equation in dn shows that dn ~" and dm are of  the 
same degree of smallness; we can therefore neglect the term in dm 2 by 
comparison with that in dm. We have therefore 

0ae] dn 2 / 0~ \ [ 0% \ + 2|~n--~'~, ] ,:In dm + 6|-~--.~--~,\on,~m] dm - -0  

when 

dn = dm +_ - 6  dm \e-d-Uml~ k-Y~nV~ 

The negative value of dn is therefore ao, d m - / 3 ( - d m )  ~12, where c~ and /7 
represent the coefficients. The positive or vapor value is - c, dm + 8 ( -  dm) ~/2, 
or, replacing - d m  by 1 - m and dn by nz - n~, 

and 

o r  

nz - n ~  = a ( 1  - m )  - /3(1  - m )  1/2 

no - n~ = . ( 1  - m )  + / 3 ( 1  - m )  1~2 

n~ - nz = n2 - n l  = 2/~(1 - m )  1/2 

I f  we introduce this value of n~ - nl into the expression for a, it becomes 

2 (-r~ -.._.____5-~ ~s2 
"3 (ac)l12P~2/33\ -r~ ] g 

The value of/3 implied by the equation of state ~ = 8m/(3n - 1) - 3In 2 
is found to be 2. The equation of state E = 8m/(3n - 1) - 3/mn 2 or c = 
8m/(3n - 1) - 3[exp(1 - m)]/m 2 (van Laar) would make it 2x/2 -- 2.83. 
The empirical formula of  Mathias, for which the coefficients have been 
calculated to give good agreement down to m = 0.8, leads to rather larger 
a value, which we can fix at about 3.5. It  follows from the form of the tem- 
perature coefficient of a, that is, of  [(zk - z)/r~] 3/2, that not only does c, 
vanish at the critical tempera ture- -a  consequence which should naturally 
follow from all theories--but  also that d,~/d~- is zero at that temperature. 
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W h e n  the re fo re  ~ is r ep re sen ted  as a f u n c t i o n  o f  ~- the  cu rve  touches  tha t  

~- axis a t  ~- = ~k, whi le  it  f o l l ows  f r o m  Eq .  (11.3) t ha t  this cu rve  cuts  t he  

r axis at  an  acu te  angle,  v 

12. THE D I M E N S I O N S  OF THE CAPILLARY LAYER 

The equation 

2] dh ~lp 

can  be c o n s i d e r e d  to  be  a d i f ferent ia l  e q u a t i o n  fo r  d e t e r m i n i n g  h. Le t  us 

t he re fo re  r educe  it  to  the  f o r m  

dh = (c/2)ll2Vy l p f  lf2n-aI2 q (n  - nl) - ~ dn dn 
1 

or,  n e a r  ~'k, to  

dh = vk p~ [ - ~ .  \~n3 j k  j n-al2(n - n l ) - l ( n 2  - n) -1 dn 

/f u24 (u) = 21 ~ I n -  a12(, 
f r d .  l - , -  - "1)-1(n2 - " ) -~  d" \ 

Let  us take 

f u2~b(u) du = u~2 f ~b(u) du 

w h e r e  u~ is c o m p a r a b l e  wi th  t he  r ad ius  o f  the  sphere  o f  a t t rac t ion .  W e  h a v e  

t h e n  

h = 2 u l  ~ n a / 2 ( n - n l ) ( n 2 - n )  

a n d  it  f o l l ows  a t  once  t h a t  h will  be  large  c o m p a r e d  wi th  n1.8 F o r  m a x i m u m  

s impl ic i ty  we  t ake  the  f a c t o r  n 312 e q u a l  to  un i ty  in m a k i n g  the  i n t eg ra t ion ,  

v This is consistent with the observations of E. C. de Vries (Metingen over den invloed 
der temperatuur etc., Proefschrift, Leiden, 1893), to which Prof. Kamerlingh Onnes 
has drawn my attention, where the author confirms the first form of the curve that I 
have developed in this theory, which had indeed already been implicit in my train of 
thought in 1888. The figures reported by de Vries on p. 47, in the column headed CH, 
do not, it is true, agree with [(~'k - r)/r~] 312, but with an exponent that can be found 
to be about 1.23, increasing slowly as one approaches more closely to the critical 
temperature. 

8 If we accept the law $(u) = exp(-u/A),  where ,~ is a constant (see Section t5), then 
ul = A~/2. If we make certain assumptions, we find that for ether A = 1.74 x 10 -8 
cm and ul = 2.46 x 10 -8 era. [This form of intermolecular potential was discussed 
in detail in Appendix 5 of the original paper.] 
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and put the limits equal to n2' and nz' in order to avoid a difficulty that 
becomes apparent  at once. We have then 

h =  2ul i n [ n 2 ' _ - ~ n 2 - z n l - - ]  
n a - - n l  L n z -  n2 n ~ ' -  nzJ 

I f  we now let the limits coincide with n2 and nz, then h becomes infinite; 
however, it does not seem to me that this result invalidates the present 
theory. Let us take nz' and nz '  so close to nz and n~ that they would be 
experimentally indistinguishable f rom them, e.g., nl '  - nz = nz - nz' = 
10-6(nz - nl); then 

h = 2 u l ( n z  - n l )  - t  ln(1012) 

Thus at temperatures where n2 - nz is a small fraction, e.g., 1/10, h will 
still, for these limits, be less than 600 times u~. It  is only when h = 2000ul 
that we reach a value equal to that of  the wavelength of visible light. Now 
the temperature at which n2 - nz = 1/10 is very close to the critical. The 
fact that, for the limits chosen above, the value of h must become infinite 
when nz - nz = 0 is not a problem. We have, it is true, a layer of  infinite 
thickness, but its properties do not differ from those of the vapor  and the 
liquid at the same limit. We can conclude from this that the thickness of  the 
layer increases with rising temperature. 

13. T H E R M A L  PROPERTIES OF THE CAPILLARY LAYER 

Let us consider a vessel containing a liquid and vapor, the liquid being 
bounded by a plane surface, e.g., a taut membrane of liquid. There will 
be the same pressure everywhere in the vessel; let this be p, and let the 
temperature be r. 

Let m~ be again the mass of  the liquid, q the energy of  this mass, etc. 
The following equations apply to, the three masses: 

E1 - -  "r~h + p V 1  = m l t z l  

~2 - r %  + p V2 = m2~1 

Es - rTls + p Vs = m d * l  + o S  

Suppose that there is a small change; then we shall have 

d q  - r d ~ l  + p d V 1  = tzt  din1 

&9. - * d~72 + P d V 2  = I*1 drn2 

dE s --  z d~7~ + p d V s  = t*l d m ,  + ~r d S  
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If  the total amount of  matter is unchanged, then drnl + din2 + dins = O, 

and similarly if there is no change of  volume, dV~ + dV2 + dVs = 0. Then 

d E -  r dr I = e d S  or r d v  = dE - e d S  

where E and ~7 are the total energy and entropy in the vessel. If  we compare 
this with the equation 

r dr I =  dE  + p d V  

then we can conclude that the relations for p given by the mechanical theory 
of heat can be applied without modification to - e .  Had the volume not 
been supposed to be constant, we should have had 

r dr l = d E  + p d V  - ~ dS  

If  we now consider E as function of r, V, and S, the last equation becomes 

~E ~E ~E 

Since dr must be a total differential, and since dr, dV, and dS  are 
mutually independent, we deduce in the usual way that 

8E 

We deduce that if the surface is increased at constant volume, then it is neces- 
sary, to maintain the temperature constant, to add an amount of heat given 
by the equation 9 (aO/aS)v.~ = - r ( a a / a r ) s , v  {see Gibbs, pp. 434 and 436 
[pp. 269 and 271], Eqs. (587), (593)}. Since cr is a function only of the tem- 
perature, we can replace (8e/ar)s ,v  simply by d~/dr. This follows moreover 
from the relation (~2p/~r ~S)v  = - ( ~ 2 ~ / ~ r  c~V)s. 

The equation p d V  = r dr I - dE  + ~ d S  allows us to reach the same 
conclusion by noting that the state is determined by 7, P, and S, and by 
remembering that d V  is a total differential: 

Suppose now that no heat be added, and so that d r = O, and that the 
lowering of temperature be compensated by condensation, so that dp = 0; 
it follows that 

(av/as),,= (aolap)~s 

9 It follows from this equation that, since at the critical temperature o = 0 and so 
(OQ/OS)~,v = 0, then do~dr is also zero, as follows from my theory, and in agreement 
with the observations of de Vries. 
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The work done on the contents by the external pressure p, which 
diminishes the volume by virtue of the condensation, is equal to 
-p(O V/~S)n.~. From the last equation, this work is therefore 

-p(aV/OS)~,  = -p(~e/Op)~s 

This relation can be put into a form that we shall be able to derive at 
once f rom other considerations. Since e is a function only of the tempera- 
ture, and so independent of  S and ~, this work can also be expressed as 
-p(da/dr)(dr/dp).  Here p represents the pressure of  the saturated vapor, 
and so 1~ r dp/dr = r/u, and the work is - (up / r ) r  da/dr [Gibbs, Eqs. (592) 
and (595)]. 

The heat that we must add at constant volume to increase the surface 
by unit area while holding the temperature constant is - r de~dr. If, however, 
we do not add this heat, then the vapor condenses; and when this happens 
the external work provides part  of  the heat that is liberated, and this part  is 
represented by the fraction pu/r. 

I f  we determine the value of (~E/~S)v,~, we find it to be ~ - r d~/dr. 
This does not contradict Section 9, where we have put the capillary energy 
equal to e. When we increase the layer by unit surface area, for example, 
by stretching a membrane,  we do work equal to e, which is added therefore 
to the energy of the membrane.  We must in addition furnish a quantity of  
heat equal to - r dcr/dr. The total increase in energy is therefore a - r d~/dr. 
In Section 9 we have denoted the special work to be done by e, not counting 
the added heat, in agreement with the arguments above. It  is this quantity 
that is generally called the capillary constant. 

14. D I S C O N T I N U O U S  B O U N D A R Y  LAYER 

The form found for the capillary constant in the case of  a gradual 
transition of density allows us to calculate also the usual value that follows 
f rom the theory of Laplace when the changes are discontinuous. Let 

e = f u2~b(u) du f ~_~ dph = f {u~b(u) du f doh 

Now we have 

dp~ u 2 dapn 
pn-u = pn - u---~ + 2 dh 2 

10 The values of p and of dp/d, are not changed by the presence of the surface layer, 
or, rather, the usual relations of the mechanical theory of heat are equally valid for 
a liquid and vapor separated by a planar layer. [r and u, not defined in the original 
paper, were symbols commonly used for AH and A V.] 
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When h is smaller than u, as is the case if h is really zero, then Ph-u = P1, 
and so 

dph u 2 d2ph 
u - ~  = Ph -- PI + -5 dh - - -~  

If  we now recall that 

l a b  ap = 
1 [ # i  = 

which can be put equal to zero at the limits (and similarly for the higher 
terms), then all that remains of  cr is 

�89 f u~(u) du. (P1 p~)2 

But we recognize that this last equation is not in accord with the tem- 
perature dependence of the capillary energy. To avoid this difficulty we should 
have to adopt the hypothesis that the way the molecular forces act is different 
for the liquid and the vapor, a hypothesis which is not supported by the 
continuity existing between these states. Moreover, such a supposition 
would explain nothing; it amounts only to an admission of  our inability 
to explain capillary phenomena, because we have insufficient information. 

The state described in the preceding pages can certainly exist; that has 
been proved by the study of  stability. If  we want to show that another state 
is impossible, we must prove not only that the free energy is at a minimum 
for the case of a continuous transition, but also that there is not a state of 
the same energy with an even smaller value; such a demonstration is diffi- 
cult. However, the theory that supposes a discontinuity has not even been 
tested to see if such a state is one of equilibrium, and still less to see if it is 
stable. I think therefore that I have the right to conclude that for the moment 
the hypothesis of continuity has the greater probability. 

15. S O L U T I O N  OF THE C O M P L E T E  D IFFERENTIAL 
E Q U A T I O N  

The solution of the capillary problem given above would be completely 
rigorous if all the coefficients c~n for n > 1 were equal to zero. The way in 

which we obtain these functions f u4~b(u) du, etc., makes this condition un- 

likely. We must therefore expect that the solution given above should only 
be an approximation. We cannot exclude the possibility that the complete 
solution, should it be realizable, might tell us something of  the limits of  the 
temperature above which there is a continuous transition, as we have as- 
sumed above, and below which there might be a real discontinuity. The 
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complete solution is unfortunately impossible because we do not know the 
value of  the functions c2,. 

The more rapidly these functions decrease, the more closely the solution 
above approaches the true one. I f  we assume a relation between c2 and c4, 
etc., which obviously exaggerates the sizes of  the successive coefficients, and 
if we can solve the problem, then the true solution will undoubtedly lie 
between that obtained by putting ca, c6, etc., equal to zero and that obtained 
by giving these functions too great a value. I have therefore looked for a 
solution on the hypothesis that 

ac4/4! = (c2/2!) 2, a2c6/6! = (e912!) 3, etc. 

and so 
1 2 t etc. 

These relations between the coefficients follow rigorously if it is assumed 
that r = exp( -u /h ) .  With this hypothesis, and putting c2 = c, we have 

2 d2p 2 d4p 
c -d~ + ~.. c4 ~ + etc. = f (p )  - tzl 

2a c2 d~P + e t c ' =  ~ ~ a (  ~f  d2pFp~ + - S o  2o2f (d~)2}  

o r  

Hence 

f ( p )  - ~ - c ~  = Ya ~ ~-~  + 

(a~)2 { 1 ~f\ a2p (15.1) - c e2f = c 1 + ~-a-~pj dh---- ~ f (P)  - tzl 2a 6p2 

The function o f f (p )  now represents what previously wasf (p )  + p df/dp, 
and f ( p )  - #1 becomes the function 

f: p V  - pl  V1 - p dV 
1 

when this is expressed as a function of p by substituting 1/p for V. I f  we 
mark  on the p axis the lengths p2 and pl, then, since 

~f(p) = I dp = _ Va dp 
~p p dp dV  

the curve f (p )  - p~ has a sinusoidal form, that is, the ordinates are positive 
at first for a certain range, and then negative. They start and end with the 
value zero and change smoothly. 
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Let us represent  this by  

/3~ sin[2m~r(p - p~,)/(p1 - P2)I 

I f  we are satisfied with one term, then we solve Eq. (15.1) by put t ing 

f ( p )  - t~l = a k ( p z  - p2)sin[2~r(p - p2) / (p l  - P2)] 

Since 8 2 f / S p  2 = - 4 ~ 2 f ( p l  - p 2 ) -  2, Eq. (15.1) can also be writ ten 

[f(p)-m] l+2a( =m) 2 =c l+  jdh 2 

and so 

( 1 Of] -z 
= I f ( p )  - tzl] I + ~a-~-O] 

or 

- 2~r (Pl  - P2) 2 d cos 2~r p - P2 1 + ~rkcos 2rr p P- ~ -z 
Pz P~]L Pl - P2 

of  which the integral is 

1 + 2 a ( ~ - - - p 2 )  2 dh = C 1 + ~ - k  L P x -  P2JJ 

= ( 1  + ~ k )  2 1 + ~ r k c o s  2rr 

(15.2) 

where the constant  C has been chosen so that  d p / d h  = 0 when p = pl 
and p2- 

I have derived Eq. (15.2) because  it can give us an idea of  how it should 
be possible to decide if the transi t ion layer is cont inuous or  if  it has a dis- 
continuity.  This equat ion makes  d p / d h  infinite when cos[2cr(p - P2)/ (Pl  - P2)] 
= - 1 / r & .  F o r  very small values of  k this condi t ion cannot  be satisfied. I f  
we take I /~rk = 1, then there will be an element o f  the curve p = f ( h )  where 
the tangent  is perpendicular  to the h axis, and for  larger values o f  k it may  
be assumed tha t  there is a discontinuity. F o r  1/~rk < 1 the curve represented 
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by (15.2) has the form shown by the dashed line in Fig. 3, that is, a curve for 
which, at certain values of  h, there are three different densities, and this is an 
absurdity. 

However, this is not to be feared near the critical temperature where k 
is very small. I have verified that k approaches zero as r approaches ~ ,  so 
that the value of  ~ as calculated above is the same as the approximate value 
for these temperatures. 

Without having recourse to Eq. (15.2), we can deduce from (15.1) that 
the particular case dp/dh = oo will occur when 1 + (2a)- ~ ~f/~p = 0. I f  we 
start f rom the liquid side, f (p )  - tz~ becomes negative and O2f/eo2 is posi- 
tive. The left-hand side of  (15.1) is therefore entirely negative, and so also 
is d2p/dh 2, since 1 + (2a)- ~ Of leo is positive. I f  dp/dh rises toward an infinite 
value, then a little before this point is reached the sign of the left-hand side 
will remain negative, unless we have the special case that e2f/~p2 changes 
sign. But then the sign of d2p/dh 2 will change also, and so the same thing must 
occur for the coefficient of d2p/dh 2, that is, 1 + (2a)-1 ~f/~p. 

This allows us to find, from the equation describing the state of  the 
liquid, the temperature at which dp/dh becomes infinite for the first time. 
We know that df/dp = p-1 dp/dp, or - 2 a p  = dp/dp, and since dp/dp is 
negative, this temperature must be on the unstable branch of the isotherm. 
The equation Op/Op = - 2ap, or dp/dV = 2a/V 3, or again R r ( V  - b) -  2 = O, 
requires that z = 0. 

I f  we had represented the equation of  equilibrium 

by 

c2~ d2"p -__ f (p )  -- tzl 
2n ! dh 2~ 2 

d2p c 2 d~p 
C-d-~ + m a ~-~ + etc. = f (p)  - / z l  

thus attributing to the successive coefficients a value m times greater [always 
supposing that the (me/a) '~ d2'~p/dh 2'~ converge to zero], then we should have 
found that the condition under which dp/dh becomes infinite was the equation 
1 + (m/2a) ~f/~p = O. I t  gives 

R7 = a V ~  2 - 

The two equal roots are given by V = 3b and , /r~ = 1 - (Sm) -1, so 
that it is only if m becomes infinite that the discontinuity would occur near 
rk. The hypothesis m -- 1 leads to continuity at all temperatures, and seems 
to me to be the truth. As I have pointed out above, it follows from the 
hypothesis ~(u) = exp(-u/A).  Since I wrote these pages I have been able 



Translation of "The Thermodynamic Theory of Capillarity" 241 

to convince myself that this function agrees with all the known mathematical 
properties of  the molecular interactions. It leads to the expression 

P = C - (flu) exp(-u/Z)  

for the potential between two material points placed at a separation u. The 
expression exp(-u/A) can be thought of  as an extinction factor, in which h, 
which is nothing but the ratio of the two constants H and K in Laplace's 
theory, is so small that the molecular interaction diminishes exceedingly 
rapidly. 

Since I now no longer believe the supposition m -- 1 to be arbitrary, 
but to be in accord with the facts, I have derived the form of  ~ from the 
differential equation (15.1). If  we provisionally retain the factor m, we find 
that m = 0 leads to the previously obtained approximate value of  ~, and 
m = 1 to the exact value. If  the equation is 

we derive from it 

d2p c 2 d4p 
f = c-d~ + m--a'-d~ +"" 

f = c-d-~ p + ~-~ f 

Multiply both sides by do + (m/2a) d fand  obtain, after integration, 

pf + (Pl + P) + "~-~f = ~ -~ 1 + ~aap] 

from which we find, after using the relations found above, 

o r  

f a = c  dh 1 + 2adp ] 

We should now ask if we can demonstrate also the stability of the general 
case. The number of differentials which have to be taken into account makes 
this very difficult. It follows from 

f [ -'2d2p "4d~p ] I =  pdh f ( p ) -  t z~-  a^ ~ -  aa ~ . . .  
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that 

82I = ~2 P dh (80) 2 ~ [Pf(P) -/~11 
k P 

/d2p~ /d4p~ 
- 2a~2 8P ~ - ' ~ ]  - 2a2t~ ~O ~ [ - ~ i ]  ""] 

(see Section 7), or, after integration by parts, 

82x = -~ o dh (sp) 2 ~ [pf(p) - ml  

- 2ak 2 80 d2(SP) d'(SP) ] 
dh 2 2aA 4 8p dh 4 ... 

The artifice of Section 7 does not work in this case. But in comparing 
the calculations with those of Section 7, after having introduced t(dp/dh)c~ 
in place of 80, one can see at once the conditions under which I was able to 
determine the sign of the second-order variation in the simple case. The 
number of separate problems for which one can fix the conditions of maxi- 
mum and minimum values is very small. But it must be noted that the state 
of equilibrium implies, just as for the simple case, that the densities in the 
superficial layer are those that, extended throughout a nonzero space, would 
give rise to an unstable state. Nevertheless the demonstration of stability 
holds in Section 7 for the simple case, and so there is no good reason to 
suppose that it cannot hold also in the more general case. 

At the critical temperature the result given by the complete equation 
differs so little from the value described previously that we can use the 
latter without modification. 

APPENDIX (see Section 6) 

To keep matters simple we have used here a particular form of the 
equation of state, but the conclusions are quite independent of this choice. 
When therefore G. Bakker 11 claims that I have used the hypothesis E = 
~(v) + ~(T), it must be said that my conclusions do not depend on this choice. 
The result that the free energy is equal to f ( p )  - �89 d2p/dh 2 at height h in a 
planar transition layer is independent of it. We know that c2 in this expres- 
sion represents an integral that is independent of the distribution of matter, 
and that f ( p )  is the free energy in surroundings of homogeneous density. 
The fact that the passage to the transition layer takes place only gradually 

11Z. Phys. Chem. 12:284 (1893). 
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has also been established without appeal to this hypothesis; and this inde- 
pendence extends to the estimation of the order of magnitude of ca. An 
expression of  the form f ( p )  = �89 d2p /dh  2 is obtained even on a kinetic 
hypothesis which supposes that the mean value of  the potential energy is 
affected only by the direct collisions of the molecules. 

Let us consider a special case where the molecular pressure depends 
also on the temperature, and is put equal to a o f ( r ) / V  2. Since d ~ / d V  = 

r ( d p / d r ) v  - p ,  we have 

= c - a o p [ f ( r )  - ~'f'(~)] 

The term - aop f ( r ) ,  which for brevity we denote %, is to the molecular pressure 
K = p2aof( ' r  ) = -Oek as the potential of the plane surface of  liquid of 
homogeneous density is to the force with which an elementary column of  
infinite length of  the same liquid resting on it is attracted by a unit section. 
We require that the liquid is of  homogeneous density not only in the sense 
of  molecular theory, but also from a mathematical point of view, and that 
the particles of  the 1Kluid exert mutual forces which derive from a potential. 
If, as is usual, we take a layer of thickness dh at height h in the column 
above the liquid of density p, if moreover, the potential of  the liquid bounded 
by a plane is Ph at height h, then the force per unit surface acting on this 
layer is (dPh/dh)p  dh,  and the effect exerted on the whole column by unit 
surface is 

f: K '  = p d P  = - pPo 

where Po is the potential of the liquid at the surface. 
In place of the mathematical liquid uniformly filling space, we can sup- 

pose also a liquid in which matter is concentrated in molecules, but where 
the probability that any molecule finds itself at a given point in space is 
always the same. This supposes that the molecules are distributed in a 
totally arbitrary way, and that larger or smaller separations are not, as in 
the kinetic problem, favored in the way that probability indicates. It must 
further be assumed that the interaction between two molecules is determined 
only by the position of  a single point in each molecule. 

If  everything were really thus, then we could express the relation be- 
tween e~ and K as above; the first part of  the energy E~ = -a0pf(7)  is the 
work done against displacement forces, the potential of which determines 
the molecular pressure. 

But if the real state of  affairs in liquids departs from this picture, as I 
now show--and it is this that I allow in my theory when a depends on the 
temperature--then we must consider the second fraction ape-f  ' (r)  as a com- 
plementary energy. We can say of this energy that it belongs to the molecules 
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by virtue of  the particular state in which they find themselves for the values 
of  p and ~-. I t  will be clear that in my theory of capillarity this second part  
of  the energy plays a role only in very special conditions. It  suffices to say 
that it is the value of E - rT, and not that of  E, that matters, and in the case 
we are considering r~ gives us a term which annuls the one in question. In 
general, after subtracting a pure function of temperature, we have E - r~ -- 

f p dV, and we find again for ~ - ~-T/in homogeneous surroundings 

4J = - aoof("r) - R r  lh(p-1 _ b) 

We find similarly the expression that I have used in the text for points 
where the density is not uniform, provided that the second part  of  the 
energy aop'rf'(~') depends only on the local state at these points, that is, on 
~- and p, and not on d2p/dh 2, d~p/dh ~, etc. I know of no evidence I could 
invoke against this last hypothesis. I t  is in complete agreement with what I 
have assumed previously; that is, that the entropy is determined only by. 
p and T in places where the density is not homogeneous. 

When I have had to calculate the difference between e and el, I have 
therefore never taken account of  the displacement forces. The form of the 
integrals c2, cA, etc., becomes complicated as soon as one abandons the 
idea of  an absolutely uniform probability for the distribution of molecular 
centers in the space around a given molecular center. Such considerations 
guide us wholly when in the domain of kinetic theory, and although they 
show us that c2, etc., could depend on the state, that is, on ~- and p at the 
place one evaluates the integral, we cannot yet expect the kinetic theory to 
tell us this dependence. I have therefore excluded this complication from my 
theory, and have not discussed here how one could study, by purely 
thermodynamic arguments, the way in which c2, etc., could depend on the 
density. 


